Hopewell Water Company Consumer Confidence Report 2001

Is my water safe?

Last year, we conducted more than 13 tests for over 69 contaminants. We only detected 4 of those contaminants, and found none at a level higher than the EPA allows. Your tap water met all U.S. Environmental Protection Agency (EPA) and state drinking water health standards. This report is a snapshot of last year's water quality. Included are details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. We are committed to providing you with information because informed customers are our best allies.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

for public health.

The source of Hopewell Water Company's water are two springs; the Zimmerman Spring and the Nelson (Palmer Creek) Spring. They are located in the Eola Hills.

Source water assessment and its availability

The water assessment is done by The Waterlab Corporation, of Salem, Oregon. The reports are available online at the Oregon Department of Human Services, Drinking Water Program web site: http://159.121.24.16/inventry.php3?pwsno=00251 This report may be viewed online at: http://auction.homestead.com/CCR2001.html

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming. Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. Organic Chemical Contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems. Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water that must provide the same protection

How can I get involved?

Contact any board member! President - Darrel Eaves 503-868-7347 or Secretary - Steve Aldrich 503-868-7092

Water Quality Data Table

The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the talendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

Important Drinking Water Definitions:

MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Contaminants (units)	MCLG	MCL	Your Water	Rai Low	nge High	Sample Date	Violation	Typical Source		
Inorganic Contaminants										
Antimony (ppb)	6	6	0	NA			No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition.		
Arsenic (ppb)	NA	50	5.1	5.1	5.1		No	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes		
Barium (ppm)	2	2	0	NA			No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits		
Beryllium (ppb)	4	4	0	NA			No	Discharge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and defense industries		
Cadmium (ppb)	5	5	0	NA			No	Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; runoff from waste batteries and paints		
Chromium [Total] (ppb)	100	100	0	NA			No	Discharge from steel and pulp mills; Erosion of natural deposits		
Cyanide [as Free Cn] (ppb)	200	200	0	NA			No	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories		
Fluoride (ppm)	4	4	0	NA			No	Erosion of natural deposits; Water additive which promotes strong		

teeth; Discharge from fertilizer and aluminum factories

Mercury [Inorganic] (ppb)	2	2	0	NA			No	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland		
Nickel (ppb)	MNR	MNR	0	NA			No	Erosion of natural deposits; Leaching		
Nitrate [measured as	10	10	1.6	1.6	1.6		No	Runoff from fertilizer use; Leaching		
Nitrogen] (ppm)								from septic tanks, sewage; Erosion of natural deposits		
Nitrite [measured as Nitrogen] (ppm)	1	1	0	NA			No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.		
Selenium (ppb)	50	50	0	NA			No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines		
Sodium (ppb)	MNR	MNR	4.4	NA			No	Erosion of natural deposits; Leaching		
Thallium (ppb)	0.5	2	0	NA			No	Discharge from electronics, glass, and Leaching from ore-processing sites; drug factories		
Microbiological Contam	inants									
Fecal coliform/E. Coli (# of monthly positive samples)	0	NA	0	NA			No	Human and animal fecal waste		
Synthetic organic contaminants including pesticides and herbicides										
2,4,5-TP (Silvex) (ppb)	50	50	0	NA			No	Residue of banned herbicide		
2,4-D (ppb)	70	70	0	NA			No	Runoff from herbicide used on row crops		
Alachlor (ppb)	0	2	0	NA			No	Runoff from herbicide used on row crops		
Atrazine (ppb)	3	3	0	NA			No	Runoff from herbicide used on row crops		
Benzo(a)pyrene (ppt)	0	200	0	NA			No	Leaching from linings of water storage tanks and distribution lines		
Carbofuran (ppb)	40	40	0	NA			No	Leaching of soil fumigant used on rice and alfalfa		
Chlordane (ppb)	0	2	0	NA			No	Residue of banned termiticide		
Dalapon (ppb)	200	200	0	NA			No	Runoff from herbicide used on rights of way		
Di (2-ethylhexyl) adipate (ppb)	400	400	0	NA			No	Discharge from chemical factories		
Di (2-ethylhexyl) phthalate (ppb)	0	6	2	2	2		No	Discharge from rubber and chemical factories		
Dibromochloropropane (DBCP) (ppt)	0	200	0	NA			No	Runoff/leaching from soil fumigant used on soybeans, cotton,		

pineapples, and orchards

Dinoseb (ppb)	7	7	0	NA		No	Runoff from herbicide used on soybeans and vegetables		
Diquat (ppq)	20	20	0	NA		No	Runoff from herbicide use		
Endothall (ppb)	100	100	0	NA		No	Runoff from herbicide use		
Endrin (ppb)	2	2	0	NA		No	Residue of banned insecticide		
Ethylene dibromide (ppt)	0	50	0	NA		No	Discharge from petroleum refineries		
Glyphosate (ppb)	700	700	0	NA		No	Runoff from herbicide use		
Heptachlor (ppt)	0	400	0	NA		No	Residue of banned termiticide		
Heptachlor epoxide (ppt)	0	200	0	NA		No	Breakdown of heptachlor		
Hexachlorobenzene (ppb)	0	1	0	NA		No	Discharge from metal refineries and agricultural chemical factories		
Hexachlorobenzene (ppb)	0	1	0	NA		No	Discharge from metal refineries and agricultural chemical factories		
Hexachlorocyclopentadiene (ppb)	50	50	0	NA		No	Discharge from chemical factories		
Lindane (ppt)	200	200	0	NA		No	Runoff/leaching from insecticide used on cattle, lumber, gardens		
Methoxychlor (ppb)	40	40	0	NA		No	Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, livestock		
Oxamyl [Vydate] (ppb)	200	200	0	NA		No	Runoff/leaching from insecticide used on apples, potatoes and tomatoes		
PCBs [Polychlorinated biphenyls] (ppt)	0	500	0	NA		No	Runoff from landfills; Discharge of waste chemicals		
Pentachlorophenol (ppb)	0	1	0	NA		No	Discharge from wood preserving factories		
Picloram (ppb)	500	500	0	NA		No	Herbicide runoff		
Simazine (ppb)	4	4	0	NA		No	Herbicide runoff		
Toxaphene (ppb)	0	3	0	NA		No	Runoff/leaching from insecticide used		
Unregulated Contamina	nts						on cotton and cattle		
Sulfate (ppm)	MNR	MNR	0	NA		No			
Volatile Organic Contaminants									
1,1,1-Trichloroethane (ppb)	200	200	0	NA		No	Discharge from metal degreasing sites and other factories		
1,1,2-Trichloroethane (ppb)	3	5	0	NA		No	Discharge from industrial chemical factories		
1,1-Dichloroethylene (ppb)	7	7	0	NA		No	Discharge from industrial chemical factories		
1,2,4-Trichlorobenzene (ppb)	70	70	0	NA		No	Discharge from textile-finishing factories		

1,2-Dichloroethane (ppb)	0	5	0	NA		No	Discharge from industrial chemical factories
1,2-Dichloropropane (ppb)	0	5	0	NA		No	Discharge from industrial chemical factories
Benzene (ppb)	0	5	0	NA		No	Discharge from factories; Leaching from gas storage tanks and landfills
Carbon Tetrachloride (ppb)	0	5	0	NA		No	Discharge from chemical plants and other industrial activities
Chlorobenzene (ppb)	100	100	0	NA		No	Discharge from chemical and agricultural chemical factories
cis-1,2-Dichloroethylene (ppb)	70	70	0	NA		No	Discharge from industrial chemical factories
Dichloromethane (ppb)	0	5	0	NA		No	Discharge from pharmaceutical and chemical factories
Ethylbenzene (ppb)	700	700	0	NA		No	Discharge from petroleum refineries
o-Dichlorobenzene (ppb)	600	600	0	NA		No	Discharge from industrial chemical factories
p-Dichlorobenzene (ppb)	75	75	0	NA		No	Discharge from industrial chemical factories
Styrene (ppb)	100	100	0	NA		No	Discharge from rubber and plastic factories; Leaching from landfills
Tetrachloroethylene (ppb)	0	5	0	NA		No	Discharge from factories and dry cleaners
Toluene (ppm)	1	1	0	NA		No	Discharge from petroleum factories
trans-1,2-Dicholoroethylen e (ppb)	100	100	0	NA		No	Discharge from industrial chemical factories
Trichloroethylene (ppb)	0	5	0	NA		No	Discharge from metal degreasing sites and other factories
Vinyl Chloride (ppb)	0	2	0	NA		No	Leaching from PVC piping; Discharge from plastics factories
Xylenes (ppm)	10	10	0	NA		No	Discharge from petroleum factories; Discharge from chemical factories
Contaminant(s) (units)	MCLG	AL	Your Water	# of Samples > AL	Sample Date	Exceeds AL	Typical Source
Inorganic Contaminants	3						
Lead (ppb)	0	15	7.1	0	2000	No	Corrosion of household plumbing systems; Erosion of natural deposits
Copper (ppb)	0	1.3	.039	0	2000	No	Corrosion of household plumbing systems, Erosion of natural deposits

Units Description:

NA: Not applicable ND: Not detected NR: Not reported

MNR: Monitoring not required, but recommended.

ppm: parts per million, or milligrams per liter (mg/l) $\,$

ppb: parts per billion, or micrograms per liter (µg/l)

ppt: parts per trillion, or nanograms per liter

ppq: parts per quadrillion, or picograms per liter

of monthly positive samples: Number of samples taken monthly that were found to be positive

For more information contact:

Hopewell Water Company

Steve Aldrich - Secretary Phone: 503-868-7092 10700 Jerusalem Hill Rd. NW Salem, OR 97304

Darrell Eaves – President Phone: 503-868-7347 13650 Oak Rd. NW Salem, OR 97304